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Abstract  

An expression for intensity distribution in powder 
X-ray diffraction from a sample containing stacking 
faults is derived. The analysis has been made for an 
experimental powder pattern of faulted TiSI.56 which 
was prepared by reducing TiS 2 in an H2S-H 2 atmos- 
phere at 683 K. A model is assumed in which slides 
that cause the faults take place only between the 
S-Ti-S sandwiches. The experimental result is satis- 
factorily interpreted on the basis of the model. 

Introduction 

The layer units for the analysis of titanium sulfide with 
stacking faults were previously considered and the 
calculation procedure of the distribution of X-ray 
diffraction intensity along the reciprocal-lattice line has 
been described (Onoda & Kawada, 1980). At times, 
only the polycrystalline specimen is obtained, so it is 
important practically to analyze the powder X-ray 
pattern of faulted titanium sulfide. In this paper, the 
analysis of faulted titanium sulfide was attempted by 
comparing the experimental powder pattern with the 
calculated profile based on a model. 

Expression for intensity distribution in powder X-ray 
diffraction 

According to the powder-pattern power theorem 
(Warren, 1941, 1959), the total diffracted power is 
given by 

R 2 M23 r I(~,r/,0 
p - -  _ _  _ _  J dV(RS) 

4 sin 0 

----zc~RE ~'23 f f f I(~,rl, Osin___~ d~ dr/d~, (1) 

where R is the distance from the sample to the receiving 
surface, M is the number of crystals, ~, r/ and ff are 
continuous coordinates along a*, b* and c*, dV(RS) is 
a volume element in reciprocal space, and v, is the 
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volume of the unit cell. The intensity, I(~,r/,O, of the 
diffuse scattering from a one-dimensionally faulted 
crystal is expressed by 

I(¢,q,O = N3 L(¢,q)D(O, (2) 

where N 3 is the number of layers, L(~,r/) is the Laue 
function along a* and b*, and D ( 0  is the intensity 
distribution along the reciprocal-lattice line, such as 
10. ~. We have 

~=h + u, rl=k + v, (3) 

where h and k are integral indices, and u and v are 
small fractions of a reciprocal-lattice unit. Then 

R2 M23 f f f N3 L(u,v)D(O du dv d, p - - _ _  
4v a sin 0 

R 2 M~. 3 r D(O 
-- - -  N 1 N 2 N 3 J - -  d~. (4) 

4v a sin 0 

For ~ >> u and ~ >> v, that is for d* > d~' or sin 0 > sin 00 
where d* is the distance of ~r/~ from the origin of the 
reciprocal lattice and d~ is that of hid), and 20 and 20 o 
are the diffraction angles corresponding to d* and d~, 

4 
~2 c,Z = d.2 _ d~2 = -if (sin z 0 -  sin 2 00), (5) 

and 

d* sin 0 cos 0 
d~= ~ d(d*) = 2c*(sin z 0 -  sin z 00) ~/z d(20). (6) 

Then 

R2 M22 NI N2 N3 F D'(20) cos 0 
P =  

4V a C* (sin z 0-- sin 2 00) 1/2 d(20). (7) J 
Where D(0,  which is numerically calculated in the 
manner described in the previous paper (Onoda & 
Kawada, 1980) as a function of ~ based on a model, is 
converted into D'(20) in such a way that the value of 
D'(20) is eqval to that of D ( 0  under the condition that 
20 corresponds to ~ by the relation (5). P is expressed 
by using the diffracted power per unit angle P2o as 

P = f Pzo d(20). (8) 
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Accordingly, 

R 2 M)I, 2 N 1N 2 N 3 D'(20) cos 0 
Pzo = • (9) 

4v a c* (sin s 0 -  sin s 00) 1/5 

Since six hk.~ reflexions and six kh.~ reflexions 
contribute to the powder intensity of the same 
diffraction angle 20, the power per unit length of the 
Debye ring which is observed by using a powder 
diffractometer can be expressed as follows after 
introducing the polarization factor: 

1 + cos 2 20 

P'zo = K sin 0(sin 2 0--  sin s 00) '/5 [D~(20) + D '  (20)], 

(10) 

where D+(20) and D' (20) are D ' (20)due to hk.~ and 
kh. ~ respectively. Equation (10) is substantially equal 
to the expression given by Warren (1941) and Brindley 
& M+ring (1948). 

For d* ~_ d~ or sin 0 ~_ sin 00, the integration in (1) 
is more complex. After application of Warren's 
approximation, the following expression is obtained: 

(_X~__~,) '/2 (1 + c°s2 20) 
P~o=Kx  2 (sin 0) 3/2 F(a) 

× 1D2(20) + D' (20)1, (11) 

where S is the quantity which has the significance of a 
particle dimension, and a is (2k/~S/;t) (sin 0 -  sin 0o). 
The function F(a) is defined by 

oO 

F ( a ) =  / exp[--(x2--a)2l  dx, (12) 
0 

and the value ofF(a)  was given by Warren (1941). 
When the temperature factors are treated as an 

overall isotropic temperature factor, then the intensity 
distribution profile f (20)  is written as 

f (ZO)=exp[-ZB(sin  0/2)2]P'2o, (13) 

where P'2o is expressed by (I0) or (11). 
If it is assumed that the superposition theorem holds, 

the experimental profile, Io(20), is expressed by the 
convolution of the real profile, f (20) ,  and the instru- 
mental factor, g(20', 20 - 20'). 

oO 

Io(20) = f f(20')g(20', 2 0 -  20') d(20'), (14) 
--OO 

where g(20', 20 - 20') is approximated by the sum of 
two asymmetric modified Lorentzian curves (Malmros 
& Thomas, 1977), which correspond to Ktt, and Ka2 
peaks as follows: 

g(20', 2 0 -  20') = ~A(20, 2 0 ' -  A~) ML(20, 20' - A,) 

+ JA(20, 20' + z12) 

x ML(20, 20' + A2), (15) 

where 

4(V ~ - 1) 1/z 
ML(20, 2 0 ' ) =  

Hk 

4(V/2--  1) (20--  20')2] -z 
x 1 + H~ 

(16) 

A(20, 20') = 1 -- sP(20-- 20')Z/tan 0', (17) 

HE= Utan 2 0' + Vtan 0' + W, (18) 

A l = 2 0 ~ , , -  20;¢,,,, A 2 = 20k,,2- 20k, ~, (19) 

and s is the sign of (20 - 28'). The parameters U, Vand 
W, which determine the full width at half maximum Hk, 
and the asymmetry parameter P are determined by 
referring to the experimental profile obtained from a 
faultless Ti2S 3 sample, f (20 )  and g(20', 20 - 20') are 
substituted in (14), then the profile obtained is 
compared with the experimental powder pattern. 

Interpretation of experimental powder pattern 

Experimental 

A sample of the TiS 2 phase was first synthesized 
from Ti metal powder (purity 99.0%) and S powder 
(99.9999%) in an evacuated quartz tube. The reaction 
was allowed to take place for a few days at 623 K and 
was subsequently carried out at 1173 K. The sample 
was then reduced at 683 K for 8 h in a stream of mixed 
H2S and H 2 gas, whose ratio was regulated to be 
1:400, and quenched. The composition of the sample 
was determined by weight-loss on oxidation to TiO2 in 
air at 1073 K. The powder X-ray diffraction pattern 
was taken with Ni-filtered Cu K~t radiation by a 
counter diffractometer. The measurement was carried 
out at a scanning speed of 1 o (20) per 4 min. 

The powder pattern of the sample having the 
analyzed composition of TiS~.56 could be indexed on 
the basis of a CdI2-type hexagonal lattice except for a 
few weak peaks. Selective broadening and weakening of 

Tiv2s2 $2 (TiSv~6) 

/ , 

30.0 35.0 40.0 45.0 

20(Cu Kcr) (°) 

Fig. 1. Powder pattern of TiS~.56 containing stacking faults. 
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the reflections was observed with h - k :/: 3n, so that 
the occurrence of stacking faults was suggested. The 
powder pattern (30 ° < 20 <45 °) obtained is shown in 
Fig. 1. 

Structural models and calculated intensity 
distributions 

The simplest model is that in which the hexagonal- 
close-packed S layer in the TiS2-type structure is 
randomly substituted with the cubic-close-packed layer 
in the process of reduction. A S layer with a successive 
Ti layer was adopted as a layer unit. There are four 
kinds of fundamental units (1A, 2A, 3A and 4A), as 
shown in Fig. 3 in Onoda & Kawada (1980). They are 
described as Ab, Ab', Ac and Ac' respectively, with the 
notation that A, B and C represent S layers, a, b and c 
represent fully occupied Ti layers, and a' ,  b' and c' 
represent partially occupied Ti layers. When the 
substitution probabilities are assumed to be equal for all 
S layers, 1A, 2A, 3A and 4A are followed respectively 
by 2C, 1C, 4B and 3B at probability a and by 4C, 3C, 
2B and 1B at probability (1 - a). In this manner the P 
table was obtained, and D ( 0  was calculated numeri- 
cally in Onoda & Kawada (1980). In the present study 
D(~) is converted into D'  (20) by using the relation 

- -  = (h  z + h k  + kZ)a  *~ + ~ z c ,  z. (20) 

By using a lattice constant (a = 3.43/~) and the 
thickness of the layer unit (c = 2.86/~),  the values of 
a* and c* are calculated at 2/(V/3 x 3.43) N-1 and 
1/2.86 A -1 respectively. The intensity distribution is 
obtained from (10)--(19), and the intensity curves ob- 
tained on the assumptions S = 10 000/~ and B = 1.0 
are illustrated in Fig. 2. The curve for a = 0.1 is in 
close agreement with the experimental result. However, 
a weak peak observed at 20 = 36.8 ° in Fig. 1, which 
corresponds to ~ = 0.666"/, could not be explained. 

y 0.282 
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30-0 35-0 40.0 45.0 
20(Cu Kct) (°) 

Fig. 2. Calculated intensity curves for the model in which a 
hexagonal-packed S layer in the TiS~-type structure is sub- 
stituted for a cubic-packed layer with probability a. The value 
used fory in Til+fi: is 0.282. 

Furthermore, a case was examined in which the fault 
probability in the S layer over the partially occupied Ti 
layer was different from that over the fully occupied 
Ti layer. However, the profile shown in Fig. 1 is still 
not adequately explained. Therefore, an extended model 
is needed. 

A set of two subsequent S layers and a fully 
occupied Ti layer inserted between them is named a 
sandwich. A crystal of TiS2-type nonstoichiometric 
titanium sulfide contains partially occupied Ti layers, 
which are named Ti' layers, and only positive sand- 
wiches or negative sandwiches, where the terms 
positive and negative are used to distinguish between 
changes of the successive S sites composing the 
sandwiches for increasing z, A --, B --, C --, A and A --. C 
--, B --, A respectively. A model is considered in which 
the cubic-close-packed S layer is introduced into the 
TiS2-type structure in the process of reduction in the 
following manner. A slide causes the faults, and it is 
assumed that a slide takes place only between the 
sandwiches. When faults are introduced into a crystal 
containing only the positive sandwiches and the Ti' 
layers, the faulted crystal also only contains positive 
sandwiches and Ti' layers, as shown in Fig. 3. 

The layer units whose thicknesses are all equal to 
twice the layer thickness of the simple model are 
adopted. They are composed of two S layers, one fully 
occupied Ti layer, half of a partially occupied Ti layer, 
and half of another partially occupied Ti layer, as 
shown in Onoda & Kawada (1980). 

These layer units, 1 A, 2 A , . . . .  and 8A, are shown in 
a different manner in Fig. 4. The crystal containing 
only the positive sandwiches can be treated on the basis 
of four kinds of layer units, 2A, 3A, 5A, and 8A only, 
for the present model, while the crystal containing only 

A B C A B C A  A B C A B C A  A B C A B C A  

{1 )  -~ { 2 )  - -  (3 )  

Fig. 3. The mode of formation of the stacking faults caused by the 
slides between the sandwiches. A line of linkages of two O and 
one • indicates a S-Ti-S sandwich. O S site; • fully occupied 
Ti site; ~ partially occupied Ti site. 
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the negative sandwiches can be treated on the basis of 
the layer units 1A, 4A, 6A, and 7A. The layer units are 
rearranged, and the P table shown in Table 1 is 
obtained for the positive crystal. The layer form factors 
are expressed as 

V 1, = V 8 = L 1/2(~,q){(YfTi/2) [ 1  + exp (-- i2rtO] 

+ fs e* exp (-izr(./'2) + fr i  exp (-izrO 

+ f s  e exp (-i3zr~/2)}, 

V 2, = V 5 = L l / 2 ( ~ , r l ) { ( y f x l / 2 ) [ e  + exp (--iZnO] 

+ fs  e* exp (--iz~(./2) + f x i  exp (--izr~) 

+ f s  eexp (--i3zE~/2)}, (21) 

V 3, = V 3 = L l /2(~ ,r l ){ (y fr l /2)  [e + exp (--iZzrO] 

+ fs  exp (--izZJ2) + fr l  e exp (--iztO 

+ fs  e* exp (--i3 zr(_J2) }, 

V 4, = V 2 = L l /2(~,r l ){(yfTl /2)  [e* + exp (--i2~rO] 

+ fs  exp (--i~r(_./2) + fTi e exp (--ir~O 

+ f s  ~* exp (--i3zr(./2)}, 

where L(~,r l )  is the Laue function involving a* and b*, 
fs  andfa-~ are the atomic scattering factors for the S and 
Ti ions respectively, y is the occupancy factor of the 
partially occupied Ti layer and the composition is 
represented by Til+yS 2. ~ is the coordinate along e*, 
where c* is the reciprocal of the thickness of the layer 
unit (e = 5-72 A). The existence probabilities are 
obtained as 

w l, = (1 -- 32)(1 -- 12,)/[(1 -- 32) (1 --124) 

+2121(1 -- 34) + 121%], 

w 2, = w 3, = a~ (1 -- 124)/[(1 -- 122) ( 1 -- a4) 

+ 231(1 - - 3 4 )  + 121 1 2 3 ] '  (22) 

w4' = 121 123/[( 1 - -  122) (1  - -  12~) + 212~(1  - -  124) 

+ 1 2 1  ~ 3  ] ,  

and intensity distributions for 10.~ and 01 .~  are 
calculated according to the procedures described in 
Onoda & Kawada  (1980). The intensity distribution for 
a crystal containing only negative sandwiches is 
obtained in a similar manner as given above. The total 
intensity distribution is obtained from the sum of both 
distribution curves, because a powder sample contains 
crystals made up of positive sandwiches and crystals 
made up of negative sandwiches in equal amounts. The 
sum of D ( 0  is converted into D' (20)  by using the value 
c* = 1/5.72 A -1. The calculated intensity curves for 
powder X-ray diffraction are obtained according to the 
same procedure as that described for the simple model. 
W h e n  121 = 122 =- 123 = 124, the  c h a n g e  o f  the  c a l c u l a t e d  
curve for increasing 121 closely resembles that shown in 
Fig. 2, and the experimental result is not adequately 
explained. With the assumption that a I = 32 :/: 33 = cq, 

the intensity distributions have been calculated by using 
the various values of a I and 33, and a curve for a I -- 
0.08 and a 3 = 0.65 is in close agreement with the 
experimental result, as shown in Fig. 5(a). Next, the 
intensity distributions have been calculated by 
specifying the respective values of a~, 32, a 3 and a 4. The 
curve calculated for 121 -~- 0 " 0 8 ,  122 = 0.40, a 3 = 0.10 
and cq -- 0.82 is demonstrated in Fig. 5(b), and it gives 
a satisfactory explanation of the experimental result 
including the weak peaks. 

D i s c u s s i o n  

The layer-unit expressions such as a - ( h  + h ) a - ,  c ÷ (c + 
h ) a - ,  etc. ,  described in Onoda & Kawada (1980), are 
simplified as (hh) ,  (ch) ,  etc. ,  by extracting the S packing 
character. The probability table arranged by the use of 
the simplified expressions is shown in Table 2. This 
means that (hh)  is followed by (hh)  at the probability of 
(1  - 121) and by (hc)  at the probability of a~ and so 
forth. In the case of Fig. 5(a), both (hh)  and (ch)  are 

1A 2A 3A 4A z 

o.oo 

5 A  6 A  7 A  8 A  z 

o. o 

o.oo 

Fig. 4. Layer units containing two S layers. O S site; Q fully 
occupied Ti site; • partially occupied Ti site. 

. . . . . . . . . . . . . . .  . . . . .  

,, y = 0 . 2 8 2  

'~ a, = a 2 = 0 . 0 8  ,, 
, % = a ,  = 0 . 6 5  

A 
/ 
/ 

\ 

~ ~ . . . . .  ...Z " ---- . . . .  -.--.J ___  

(b) ,", .V= 0 ' 2 8 2  

~' a t  = 0 . 0 8 ,  a 2 = 0 . 4 0  
'~ a 3 = 0 . 1 0 ,  a 4 ~ 0 . 8 2  . .  

. ,  

• : 
• . . 

, ! ~ .  ~ - / ;  "~ ...... . . .  _ ~  _ . _ = ~ - : - - ] " . . . . " ~ .  

3 0 . 0  3 5 . 0  4 0 - 0  4 5 . 0  

2 0  ( C u  Kot) (o) 

Fig. 5. Intensity curves calculated for the model of Table 1. A value 
of 0.282 is used fory in Til+yS v 
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Table 1. P table based on the extended model by using Table 2. Probability table set from Table 1 by using 
only the positive layer units illustrated in Fig. 4 simplified expressions of stacking layers 

a- (h .h )a -  EA = I 'A  
c*(c..h)a- 5A = 2'A 
c - (h .c )a *  3A = 3'A 
b ° (c , c )a  " 2A  = 4'A 
b- (h .h)b-  8B = I 'B 
a " (c .  h)b- 5B = 2'B 
a - (h .  c)b" 3B = 3'B 
c+ (c . c )b  * 2B = 4'B 
c - (h ,h ) c -  8 C =  1"C 
b* (c .h )c -  5C = 2"C 
b- (h ,c )c*  3C = 3"C 
a* (c ,c )c "  2 C =  4'C 

I'A 2"A 3'A 4~ I"B 2"B 3'B 4:B 1'C 2113 3'C 4:(2 

I-0. 4 

1 -~  

0.3 
% 

a 1 

a2 

-a. 

l-a, 2 

a 3 

a 4 

al 
=2 

1-o., 

followed by (hh) at the equal probability (1 - a~) and 
(hc) at a 1 and so on. This case corresponds to the 
existence of a slide at a Ti' layer having no influence on 
the probability of slide at the second-nearest Ti' layer. 
This model gives close agreement, but it does not 
explain adequately the fine features of the experimental 
pattern, such as the broadness of the peak at 20 = 
36.8 ° and the slight elevation near 20 = 35.0 °. In the 
case of Fig. 5(b), the existence of a slide at a Ti' layer 
influences the probability of a slide at the second- 
nearest Ti' layer. This case gives a satisfactory 
explanation. In order to obtain the microscopic model 
of S stacking sequences from the values of the 
parameters a 1 to a 4, a simulation has been attempted by 
using the random-number table. Part of the model 
obtained for the case of Fig. 5(b) is as fo l lows : . . .  (hh) 
(hh) (hh) (hh) (hh) (hc) (cc) (cc) (cc) (cc) (cc) (cc) (cc) 
(cc) (cc) (ch) (hh) (hh) (hh) (hh) (hh) (hh) (hh) (hh) (hh) 
(hh) (hh) (hh) (hh) (hh) (hh) (hh) (hh) (hh) (hh) (hh) 
(hh) (hh) (hh) (hc) (ch) (hh) (hh) (hh) (hh) (hh) (hh) 
(hh) (hh) (hh) (hh) (hh) (hh) (hh) (hh) (hh) (hh) (hh) 
(hh) (hh) (hh) (hh) (hh) (hh) (hh) (hh) (hh) (hh) (hh) 
(hh) (hh) (hh) (hh) (hh) (hc) (ch) (hc) (ch) (hh) (hc) (ch) 
(hc) (ch) (hh) (hh) (hh) (hh) (hh) (hh) (hh) (hh) (hh) 
. . . .  Why different values of the parameters give 
apparently similar curves in the cases of Fig. 5(a) and 
(b) can be explained as follows. The values of (1 - a l )  
and a4 seem to determine the broadness of the peaks, 
while the values of a 2 and a3 seem to determine the 
height ratios of the peaks and the extents of the trails. 
In the case of Fig. 5(a), the fitting was judged mainly 
by the broadness of the peak at 20 = 34.0 °, which is 
related to t h, and the height ratio of the peak at 20 = 
34-0 ° to that at 20 = 36.8 °, which is related to (t 2 and 

a3. Then the assumption a~ = a2 :P a3 = a4 may 
impose an inaccurate value on a 4 (= a3), since incor- 
rectly estimated a 2 must be compensated by shifts o fa  3 
and a 4. 

Recently a new type of Ti2S 3 has been found which is 
composed of cubic-close-packed S layers as well as the 
fully and partially occupied Ti layers, and is referred to 
as 6R type according to the Ramsdell  notation (Onoda 
& Saeki, 1980). One may suspect that the weak peak at 

(hh) 

(ch) 

(he) 

(co) 

(hh) (ch) (hc) 

1 - al al 

1 - a  2 a 2  

(co) 

1 - a 3 a 3 

1 - a 4 a 4 

20 = 36.8 ° arises from the existence of crystals of 6R 
type with stacking faults, since the strongest peak of 6R 
type is at 20 = 36.8 ° and crystals of 6R type can be 
formed by slides between the S -T i -S  sandwiches from 
crystals of 2 H  type. However, it has been found that 
the lattice constants of the faulted crystals prepared 
under similar conditions to those used in the present 
study change gradually with the nonstoichiometric 
change of chemical composition (Saeki, Onoda, 
Kawada  & Nakahira,  1980). In the binary systems 
such as the Ti-S system the mixture of two phases 
gives the two sets of lattice constants, which are related 
respectively to the two end compounds, and each set is 
not dependent on the total composition of the mixture, 
but on the individual composition of the end 
compounds. This being the case, the specimen is 
unlikely to be a mixture of faulted 2 H  crystals and 
faulted 6R crystals. 

In the case of the extended model, the occurrence of 
stacking faults does not need slides within the 
sandwiches but does need slides between the 
sandwiches. In all probability the slide between the 
sandwiches occurs more easily than that within the 
sandwiches, because a slide of one S layer over the 
adjacent S layer needs a synchronous shear of the Ti 
layer inserted between the two S layers as shown in Fig. 
6 and the shear of the partially occupied Ti layer is 

- - - ~  0 - - ~  0 - - - >  0 - - ~  0 - - ~  

0 0 0 0 0 
! 

 ,.jVj  
F 

Y 

x 

Fig. 6. Atom movement during synchronous shear. The upper and 
lower figures are side and top views respectively. The solid 
arrows indicate the displacements of the S atoms and the broken 
arrows indicate those of the Ti atoms. O, ~ S atoms; • Ti atom. 
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easier than that of the fully occupied Ti layer. It is 
probable that the stacking faults which occur at a low 
temperature such as 683 K are due only to the slide 
between the sandwiches, and the experimental data 
shown in Fig. 1 should be interpreted appropriately on 
the basis of the extended model. 

Experimental patterns which suggest the occurrence 
of stacking faults are often observed for the various 
temperatures and compositions in the Ti-S system. The 
method of analysis of the structure with stacking faults 
described above may be effectively used for considering 
the phase-relation problem in this system. 
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Abstract 

Calculations are presented of the Debye-Waller factors 
for silicon, diamond and germanium in the tempera- 
ture range 1 to 1000 K and for grey tin in the range 1 
to 280 K. Values were obtained from the shell model, 
the adiabatic bond-charge model and the valence force 
potential model for all four materials. Further values 
are listed from the fitted Born-von K~rman model for 
silicon and germanium and from two additional 
parametrizations of the valence force potential model 
for silicon. The effect of dynamic deformation on the 
Debye-Waller factor of silicon and, to a slightly lesser 
extent, the other three elements, is investigated. The 
Debye-Waller factor for the shells only in the the shell 
models is calculated. The effect introduced by dynamic 
deformation whereby the Debye-Waller B value varies 
with scattering vector K is evaluated. Finally, the 
anisotropic Debye-Waller factor components for the 
bond charges are calculated for all four elements. It is 
found that the bond charges in the bond-charge model 
and the shells in the shell model vibrate substantially 
less than the main atomic cores. It is concluded that if 
the models are at all realistic then the effects of 
dynamic deformation on the Debye-Waller factors of 
these elements should be seriously considered. 

Introduction 

Interest in the scattering caused by dynamic 
deformation of electron distributions has arisen from 
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essentially two different sources. On the one hand 
detailed investigation into thermal diffuse scattering 
processes has suggested that some contribution to the 
X-ray scattering is made by the deformation of the 
electron distribution during thermal vibration, as, for 
example, has been discussed by Buyers, Pirie & Smith 
(1968). On the other hand, very accurate crystallo- 
graphic structural determinations are reaching the stage 
with favourable materials that different thermal 
motions of different parts of the electron distribution 
associated with one particular atom may be 
experimentally distinguished. An example of these 
possibilities has been discussed by Price, Maslen & 
Mair (1978) in the analysis of data for silicon. 

In succeeding sections the aim is to bring the insight 
generated by thermal diffuse scattering studies to bear 
on the effect which is of most interest to the structural 
crystallographer, namely the Debye-Waller factor. 
Although particular emphasis is placed on providing 
numerical information for silicon, partly for 
comparison and partly for their intrinsic interest, 
additional calculations are presented for diamond, 
germanium and a-tin. 

The dynamical deformation formalism is, essentially, 
a general parametric description of the influence of 
dynamically distorting electron distributions on the 
X-ray scattering. The formalism enables distorting 
atoms to be treated in a similar way to rigid atoms 
provided certain terms in the cross section are redefined 
so that, in effect, additional terms are added to the 
scattering cross sections. As a consequence, any cross 
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